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The precipitation of lithium in solid germanium has been measured: Li is diffused into Ge from an external 
phase consisting of a molten Li-Pb alloy; diffusion temperatures extend from 250 to 420°C. Precipitation is 
measured at 60°C. Results are consistent with Morin and Reiss’ theory about the nature of precipitation sites 
and with Ham’s theory of diffusion limited precipitation. Measurements of the rate of nuclei generation are in 
rough agreement with Lothe’s theory of vacancy generation by dislocation climb, but are in substantial disagree- 
ment with earlier measurements of Morin and Reiss. 

Introduction 

The solubility of lithium in solid germanium is 
not large (I), it is only 2 x lOI cm-’ at 25O”C, but 
it increases rapidly with temperature and at 500°C 
it reaches 2 x IO’* cme3, an increase by a factor of 
1000. Hence samples saturated with lithium at an 
elevated temperature will become supersaturated 
when the temperature is lowered. This situation is 
unstable, however, soon precipitates will be formed 
within the germanium and lithium will diffuse to 
these precipitate particles, depleting the sample of 
solute, until supersaturation is eliminated. The 
present paper refers to this process of precipitation 
of lithium in germanium. 

The main features of the precipitation process 
have been reported by Morin and Reiss (2): Lithium 
does not precipitate at line defects, such as dis- 
locations, rather lithium precipitation is initiated 
at point defects which act as precipitation nuclei. 
Lithium diffuses to these nuclei and forms pre- 
cipitate particles which grow in size as the precipi- 
tation process progresses. 

Precipitation is readily measured because dis- 
solved lithium acts as a donor whereas precipitated 
lithium is electrically inactive. Thus a measurement 
of electrical conductivity can be used to find the 
donor concentration and hence the concentration 
of dissolved Li. Morin and Reiss (2) have used this 
procedure to determine the precipitation rate and 
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thence the concentration and the nature of the 
precipitation nuclei. They find that spontaneous 
precipitation is absent and that substitutional 
lithium atoms act as precipitation nuclei. These are 
formed by the reaction of a vacancy, 0, with an 
interstitial lithium atom, Li, to yield a substitutional 
Li atom, Li,: 

Lii + 0 + Li, 0 = Li,. (1) 

The authors were able to determine the equilibrium 
constant for this reaction 

KEN 
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Here C is the concentration of interstitial lithium, 
V is the vacancy density and N is the concentration 
of precipitation nuclei. The authors obtain K from 
the Boltzmann distribution law. If r= 4.42 x 1O22 
cm-3 is the density of normal lattice sites and if 
E = 1 .O eV is the energy evolved in reaction (l), then 

& = gexp(--c/kT), 

so that 

K = kexp(r/kT). (3) 

Morin and Reiss have investigated samples with 
different dislocation densities; they find that the 
rate, at which nuclei-vacancies are generated, is 
proportional to the dislocation density. Since 
vacancies are generated by the climbing motion of 
dislocation they proceed to calculate the rate of 
vacancy generation per length of dislocation. 
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Ham (3) has developed a theory of diffusion 
limited precipitation. According to this theory the 
average solute concentration C(t) is given by 

C(t) - c, = (C, - C,) @(t/T-), (4) 

where we can use the following approximation for 
W/T> 

Here 

7 = + (4mvy3 {(C, - C,) 3v}-“3. (6) 
L 

The different symbols in Eqs. (4)-(6) have the 
following meaning : 

C,, the initial solute concentration; C,, the final 
solute concentration, i.e. the solubility; DL, the 
solute diffusion coefficient; N, the concentration of 
precipitation nuclei ; and 0, the inverse of the solute 
concentration in the precipitate. 

Swalin and Weltzin (4) have applied Ham’s 
theory to precipitation measurements. They have 
measured N directly, by electron-microscopic 
examination. The same technique has also been 
used to measure v, with the result 

u = 2.5 x lo-** cme3. (7) 

On the other hand these authors have measured T 
and have calculated N. This value is in good agree- 
ment with the direct measurement. Swalin and 
Weltzin find that substitutional oxygen also acts 
as a precipitation nucleus and they give estimates 
for the equilibrium constant of the reaction 

Oi + q + 0s (8) 

We have measured the precipitation of lithium 
in germanium as a function of time. Our results are 
essentially in agreement with those previously 
reported. However, the nuclei-vacancy generation 
rate which we observe differs drastically from the 
rate found by Morin and Reiss (2). 

Sample Preparation 

Samples were about 2.7 cm long, 1 .O cm wide and 
0.13 cm thick; they were cut from Ga-doped 
germanium with a resistivity of lo-12 Q cm. The 
material had a minority carrier lifetime of 100 psec, 
a dislocation density of 1800-1900 pits per cm2 

TABLE I 

DIFFUSION PARAMETERS 

Diffusion Diffusion 
Sample temp. (“C) time (hr) 

Lithium 
cont. in 
sample 
(cm-3) 

Lithium 
cont. in 

alloy 
(at %I 

Pl 285 336 3.8 x 1016 20.1 
P2 250 360 1.02 x 10’6 13.0 
P3 330 65 1.08 x 10” 13.5 
P4 360 66 8.0 x 10’6 13.3 
P5 390 42 1.12 x IO” 14.0 
P6 420 44 2.6 x 10” 13.4 

and it was free from lineage.’ After cutting, the 
samples were ground and etched and were plated 
with tin, using an alkaline plating bath (5), in order 
to facilitate wetting. 

Lithium diffusion was carried out by immersing 
the samples in a molten Li-Pb alloy, at a specified 
diffusion temperature. For this purpose, a german- 
ium blank and an appropriate amount of Li-Pb 
alloy were placed in a boat which could be heated 
in a small oven under vacuum. The oven temper- 
ature was regulated; it is estimated that the temper- 
ature was constant to *2”C. The diffusion time and 
temperature, and the lithium concentration in the 
sample and in the alloy are given in Table I for all 
samples. We should add that only samples Pl and 
P3 were saturated with lithium at the diffusion 
temperature ; all samples were supersaturated at 
the measuring temperature. 

Measurements 

After diffusion, samples were etched to remove 
any Li-Pb alloy; ohmic contacts were applied to 
the small end faces by grinding and tin plating and 
finally, the electrical conductivity of the samples 
was measured in function of time, using a four- 
contact technique. These measurements were car- 
ried out at 60°C. 

From the conductivity c the concentration of 
dissolved lithium, ND, was obtained, using the 
graph of Fig. 1. This conversion is believed to be 
accurate to 15 y0 for large values of ND, or for 
0 2 0.3 (Q cm)-‘. The accuracy is probably worse 
for (3 < 0.3 (Sz cm))’ and fairly large errors will be 
present if the curve is used near 0 = 0.07 (Sz cm)-‘. 
The derivation of this curve is given in Appendix B. 

’ Information supplied by the vendors, Sylvania Electric 
Products, Inc., and Metallurgie Hoboken, Olen, Belgium. 
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FIG. 3. Precipitation curve for sample Pl. 
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FIG. 1. Sample conductivity versus lithium concentration 
at 60°C. 

Results 

Figure 2 shows the precipitation curve for sample 
P3. In this figure the solid curve represents C(t) as 
given by Ham, Eq. (4). The parameters of this 
equation were determined in the following way: 
The experimental data were plotted ; extrapolation 
to t = 0 gave C(0) = Co = 1.08 x 10” cmp3. Next a 
constant, say c, was subtracted from all measured 
values. c was varied until all data points with 
I > 200 hr were situated on a straight line, on a 
graph of ln(C(t) - c) versus t. A good straight 
line was obtained for c = 4.4 x 1014 cme3, this 
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FIG. 2. Precipitation curve for sample P3. 

value was taken as C,. From the slope of the straight 
line T was determined, T = 120 hr. 

We should point out, at this place, that all 
samples gave values of C, between 4 x lOI cm-) 
and 4.4 x lOI cme3, whereas the lithium solubility 
for our samples should be 3 x lOI cmp3. We 
believe that this difference is not significant and 
that it is due to the inadequacy of the graph of Fig. 
1 near 0 = 0.07 (Sz cm)-‘. Precipitation curves for 
samples PI and P2 are shown in Figs. 3 and 4 re- 
spectively; these samples were diffused at lower 
temperatures. The initial parts of the curves have 
a exp(t/T)n shape but the exponent is l/2 rather 
than 3/2 as expected from Eq. (5a). This is illustrated 
in Fig. 5 which shows a plot of In e(t) versus t’12. 

Swalin and Weltzin (4) have observed similar 
results in their low temperature samples. They 
suggest that a weak (i?< 0.06 eV), long range, 
attractive interaction between dissolved lithium 
and potential precipitation nuclei is present and 
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FIG. 4. Precipitation curve for sample P2. 
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FIG. 5. Precipitation curve for sample Pl : In c(f) vs r’/* 

that this interaction leads to a nonuniform solute 
distribution. In this case Eqs. (4) and (5) are not 
applicable; rather a transient, which is usually 
negligible, is present. This transient is of the form 
exp{-(t/T)“2}. 

From the decay parameter T one can compute 
the number of precipitation nuclei present in these 
three samples. The result is shown in Fig. 6; the 
same figure also shows the saturation number of 
nuclei as determined by Morin and Reiss (2). It 
is seen that only sample P2 is saturated and that 
PI and especially P3 are far from approaching 
saturation. This result is entirely unexpected because 
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FIG. 6. The number of precipitation nuclei in samples 
Pl-P6 as a function of the diffusion temperature. The solid 
line represents the saturation number of nuclei as determined 
by Morin and Reiss (2). 

diffusion temperature and duration had been chosen 
so as to assure saturation with precipitation nuclei. 

We have calculated the rate at which nuclei are 
generated, per cm of dislocation. This rate is shown 
in Fig. 7, together with the rate reported by Morin 
and Reiss (2). As anticipated our rate for PI and 
P3 is smaller by an order of magnitude or more 
than the rate found by the other authors. This 
leads us to the tentative conclusion that the mechan- 
ism of nuclei generation through motion of dis- 
locations is not as active as expected. Further 
support for this conclusion is provided by the 
precipitation data for samples P4, P5 and P6, to 
be discussed next. 

If indeed nuclei generation by dislocation motion 
is strongly reduced then other processes of nuclei 
generation should become noticeable. For example, 
we should expect that some precipitation nuclei are 
generated by the combination of lithium with 
those vacancies which have been created at the 
sample surface and which have reached the sample 
interior by diffusion. This process has been con- 
sidered by Morin and Reiss but was found to be 
of minor importance when compared to vacancy- 
nuclei generation by dislocation climb. 

For our samples this process is not very effective 
either. It is expected to be largest for sample P6, 
diffused at 420°C; but even for this sample the 

-! 
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T 

FIG. 7. Nuclei production rate for samples Pl through P6 
as a function of the diffusion temperature. The solid line 
represents the results by Morin and Reiss. The broken line 
is the theoretical production rate, Eq. (14). 
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FIG. 8. Precipitation curve for sample P6, initial part. 

average depth of vacancy diffusion is only lo-’ cm, 
much less than the sample thickness. In consequence 
the density of precipitation nuclei will be quite 
inhomogeneous, the decay parameter 7 [Eq. (6)] 
will become a function of position and the precipita- 
tion curve will consist of a superposition of decay 
curves with different values of T. 

In Appendix A we have analyzed the precipitation 
curve for sample P6 assuming that (a) the precipita- 
tion nuclei are produced by the combination of 
Li atoms with surface generated vacancies and (b) 

no nuclei-vacancies are created by dislocation climb. 
In this case the density of nuclei, N(x), is given by 

a 

N(x) = No 
j+x 

erfc- 
2dD,“8 

(9) 

Here N,, is the surface concentration of nuclei, 
D,* is the vacancy diffusivity, 6’ is the duration of 
the diffusion and a is the sample thickness. If we 
assume that Ham’s theory may be applied in this 
case then the average dissolved lithium concentra- 
tion C(t) can be calculated for any values of No 
and D,*, a and B being known. A calculated curve 
which approximates the experimental data fairly 
well is shown in Figs. 8 and 9. The values of the 
parameters No and D,* of this curve are close to 
the expected values, thus lending additional support 
to our assumption about the origin of precipitation 
nuclei. 

The nuclei concentration for sample P6 is 
indicated in Fig. 6 by a vertical bar which extends 
from the smallest value of N(x) at x = 0 to the 
largest at x = a/2. Since we did not find evidence 
of dislocation generated nuclei-vacancies in P6, 
we can only give an upper limit for the rate at which 
this mechanism proceeds. This limit is indicated 
in Fig. 7. 

Diffusion of sample P5 was carried out at 390°C 
at this temperature D,*~5.4 x IO-‘O cm2 set-‘, so 
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FIG. 9. Precipitation curve for sample P6. 
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FIG. 10. Precipitation curve for sample PS. 

that the center of the sample remains essentially 
free of surface generated vacancies. Vacancies 
generated by dislocation climb will predominate 
in this region so that both processes of vacancy 
production will have to be taken into account. 

The precipitation curve for sample P5 is also 
analyzed in Appendix A and it is found that 1.4 x lo9 
cm-3 nuclei are generated through dislocation 
climb. This datum is used to obtain the production 
rate shown in Fig. 7. Calculated and measured 
precipitation data for P5 are shown in Fig. 10. 

Diffusion of sample P4 was done at still a lower 
temperature, 360°C. Figure 11 shows that this 
sample exhibits almost the regular precipitation 
curve expected from Ham’s theory. The initial 
exp{(t/T)3’2}-part is missing, though; it is believed 
that this is due to the presence of a thin layer of 
nuclei produced by surface generated vacancies. 
These extra nuclei cause an increased initial pre- 
cipitation rate, offsetting the slower rate expected 
from Ham’s theory. From the exponential part of 
the decay curve the decay constant 7 is obtained, 
the number of nuclei is determined, and the rate 
of nuclei-vacancy generation is computed. These 
data are included in Figs. 6 and 7. 

Discussion 

Two topics should be taken up at this time: the 
presence or absence of impurities and the nuclei 
generation rate. We consider the impurities first. 

200 400 
Time in hours 

600 

FIG. 11. Precipitation curve for sample P4. 

Oxygen. According to Swalin and Weltzin (4) sub- 
stitutional oxygen acts as a precipitation nucleus. 
Since we find nuclei concentrations as low as 
IO* cmF3 we conclude the substitutional oxygen 
concentration cannot exceed this value. 
Gallium lithium pairs. Our material contains 
3 x lOI cmp3 atoms of gallium; these atoms are 
expected to form ion pairs of the Li+Ga- type (1). 
At the beginning of the precipitation measurements 
pairing should be almost complete, i.e. there 
should be no unbound Ga- in the lattice. Morin 
and Reiss (2) report that Ga-Li+ pairs do not act 
as precipitation nuclei. This is in agreement with 
our observations: At most 1 in 3 x lo6 pairs could 
act as a precipitation nucleus if all lo8 cm-) nuclei 
are assumed to be Ga-Li+ pairs. 
Boron. The boron content of our samples is small. 
According to Morin and Reiss (2) boron combines 
with substitutional lithium and forms a complex 
LinB- which does not constitute a precipitation 
nucleus, so that boron acts as a nucleation inhibitor. 
In samples P6 and P5 we find nuclei concentrations 
which approach saturation levels. We would not 
observe these concentrations if our material con- 
tained more than lOI cm-3 atoms of boron. 
Copper, nickel and silver. These elements have 
large diffusion coefficients in germanium [see, e.g. 
(6), (7)]; trace amounts of them could be present 
in the Pb-Li alloy used as an external phase for 
lithium diffusion. We have examined this question 
in another paper and have found (8) that lead 
should be an effective getter for the removal of 
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these impurities. This is in agreement with earlier 
results by Logan and Schwartz (9). At 400°C we 
should obtain a distribution coefficient of about 
5 x lo-* for copper. Thus a copper concentration 
as high as 100 ppm in the lead would be in equi- 
librium with only 2 x IO” cme3 of Cu in the Ge 
samples. Similar results apply to nickel and silver 
and possibly to cobalt and iron. 
Iron. Iron has been used in the alloy preparation 
and during the diffusion and quite possibly it is 
present in the external phase. The solubility of iron 
is quite small, though, both in liquid lead (10) and 
in solid germanium (II). Furthermore the Fe 
diffusivity in Ge is small (6). These arguments lead 
us to believe that Fe is not an important impurity in 
our samples. 
Others. An unidentified impurity is probably present 
in sample P2 and possibly Pl. Figure 6 shows that 
P2 is saturated with precipitation nuclei. This 
could be due to an excessively long diffusion interval. 
In that case the rate as shown in Fig. 7 should be 
quite low and this is not found. Possibly another 
type of precipitation nucleus is present in P2 but 
further measurements are needed to confirm this 
hypothesis. 

We now turn our attention to the rate of vacancy 
generation, Fig. 7, where we have a large difference 
between our data and those of Morin and Reiss. 
These authors have found that trace amounts of 
boron reduce the number of precipitation nuclei 
appreciably. This reduction should affect both, 
the nuclei generation rate and the saturation con- 
centration of the nuclei. In sample P6 we measure 
a nuclei concentration which is very close to satur- 
ation, hence is unaffected by boron, and we conclude 
that our generation rate too should be unaffected 
by boron. 

A variety of arguments may be presented in an 
attempt to explain our low generation rate: For 
example, lead diffusion might cause dislocation 
pinning at the sample surface inhibiting jog forma- 
tion. Other plausible arguments are readily found. 
It seems worthwhile therefore, to examine the 
kinetics of vacancy generation and to check if 
our results are consistent with current theories. 

The following description is usually given of 
the vacancy generation by dislocation climb (12, 
13): Jogs are created at the point where the dis- 
location intercepts the sample surface; they travel 
along the dislocation leaving trails of vacancies 
behind. Lothe (14) has examined the jog propaga- 
tion in more detail. He proposes that vacancies 
diffuse preferentially along the dislocation and 
evaporate into the lattice from the dislocation but 

not from the jog directly. The rate of vacancy 
generation depends then on the ability of the lattice 
to absorb vacancies. 

If either the number of jogs is large or if the 
diffusivity along the dislocation is large then a 
saturation condition develops : The dislocation in 
its entire length acts as a line source of vacancies 
and the rate of vacancy generation is obtained by 
solving the boundary value problem of vacancy 
diffusion. There is of course no assurance that this 
saturation condition applies to our samples. It is 
seen, however, that the saturation condition leads 
to the largest possible vacancy generation rate. We 
shall show that this rate is in rough agreement with 
our results but is in disagreement with the data by 
Morin and Reiss. 

The boundary value problem to be solved is the 
following: At the dislocation surface (r = b) the 
vacancy concentration is equal to the vacancy 
solubility, V(b) = V,,, ; at a large distance, R, a 
much smaller vacancy concentration V(R) = VR is 
present. In the steady state 

where 

27vsat - VR) 
‘= lnR-Inb ’ (11) 

The rate of vacancy generation is 

av 
g=2mD,z=D,p? 257Dv Vsat Ins . (12) 

b 

This result may be simplified by introducing the 
self-diffusion coefficient for Ge, D, 

D - Dv vsat s r ’ (13) 

where r has the same meaning as in Eq. (3). We 
obtain 

g= 
27rDs 

In! 
(14) 

b 

This rate is not strongly dependent on R or b. We 
take b = 5 x IO-* cm and we take R equal to one- 
half of the average separation between adjacent 
dislocations, R = 10e2 cm. D, has been measured 
by Letaw, et al. (1.5) so that g as given by Eq. (14) 
is known. This function is shown as a broken line 
in Fig. 7, and is seen to be in rough agreement with 
our results. 
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Appendix A 

In this appendix we consider the following 
question: Lithium ions and vacancies diffuse from 
the surface into the germanium sample. What is 
the resultant distribution of precipitation nuclei 
and what is the form of the ensuing precipitation 
process? Similar problems have been considered 
by Frank and Turnbull (16) and by Kegel (17). 
If we denote by C(x, t), V(x, t) and N(x, t) the 
concentrations of lithium, of vacancies, and of 
precipitation nuclei, respectively, then we have 
Ms. (3), (4) of 0711 

(15) 

?g=D,ag-g+G-LYv, (16) 

N== KCV. (17) 
Here DL and D, are the diffusion coefficients of 
lithium and of vacancies, respectively. G and CLV 
are the rates at which vacancies are generated and 
absorbed by the motion of dislocations within the 
crystal. The orientation of the x direction is shown 
in Fig. 12. Diffusion into the sample along the 
y and z directions is neglected, because the interior 
of the sample is too far away from the surfaces 
y = const and z = const. 

In the present case we shall neglect generation 
and absorption of vacancies by motion of dis- 
locations, i.e. we shall put G = CL = 0 in (16). Before 
integrating the two differential equations two 
points should be noted. First, DL is larger than 
D, ; for T = 420°C (sample P6) we have 

DL = 4.9 x IO-’ cm2 set-‘. (18) 
D, = 1.2 x lo-’ cm2 set-i. (19) 

Secondly, the initial lithium concentration in P6, 
C, = 2.6 x 10” cm-) exceeds by a large factor the 
saturation concentration of precipitation nuclei, 
Nsa, G?, 

N =34x 101’cm-3 sat . 3 (20) 

which in turn is larger than the saturation con- 
centration of vacancies, [see, e.g. Mayburg (28)] 

V. = 7.3 x lo* cm-3. (21) 

In consequence the loss of Li ions due to the forma- 
tion of precipitation nuclei should hardly affect the 
lithium concentration, whereas the loss of vacancies 
due to the same process should drastically slow 
down the net diffusion of vacancies into the sample. 
Thus the Li diffusion is much faster than that of 

FIG. 12. Sample geometry. The electric current flows in 
they direction. 

the vacancies, so that we can use the following 
approximations : 
In the differential equation for C(x, t) we neglect 
the aN/at term and in the equation for V(x, t) we 
assume that C(x, t) = const = C,, since C(x, t) N C0 
wherever V(x, t) differs markedly from zero. 

With these approximations the differential 
equation (16) takes the form 

av D, av a2 v 

at i + KC, ax2 -= Du*z2-. (22) 

Here we have introduced the effective diffusion 
coefficient D,* [see, e.g., (19, Eq. (6.53))] 

D D,* = v 
1 + KC,’ (23) 

For P6, KC,,” 110, so that indeed D,* < D, as 
our arguments indicated. 

The boundary conditions, applicable to (22), are 

V(;,t)=V(-;,t)=Y,, (24) 

and the solution is 
a 

V(x, t) = V0 
2+x 

erfc- 
22/D,* t 

(25) 
The boundary conditions are met, 

v(*4,t)=v,(l+erfc~]zV,, (26) 

because even for the largest value oft, t = B = 44 hr, 
the argument of erfc is 3.5 and erfc 3.5 is negligibly 
small. From V(x, t) we obtain N(x, t), and more 
specifically N(x, l3), the density of precipitation 
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FIG. 13. Concentration 
versus x, Eq. (27). 

of precipitation nuclei N(x, Q), 

nuclei at the end of 
t=B 

the diffusion cycle, i.e. for 

N(x, 6) = KC, V(x, 8) 
I a 

= No erfc 

I 

2+x 
~ 

22/D,” 0 
+ erfc 

(27) 

This function is shown in Fig. 13. It is seen that N 
is quite small for x = 0. Thus precipitation in the 
centre of the sample will be slow. This allows us 
to use an approximation suitable for the early 
phase of the precipitation process: We retain only 
one of the two erfc terms in (25); for x > 0 we have 

a 
?+ X 

N(x, 0) r No erfc L ~. 
22/D,” 6 

(28) 

We turn our attention to the precipitation process 
now. Since N is a function of x, 7 will depend on 
x too. For our computations the inverse, 7, is more 
convenient. We have, combining (6) and (28) 

q(x) = rt;r = D,(~T~N)~‘~ (3(C, - C,) u)“~, 

= 710 @)9 
(29) 

where 

v. = DL(4~No)2’3 (3(Co - C,) G)“~, (30) 

I)(U) = (erfc z4)213, (31) 

a 
m x 

(32) 

The lithium concentration at x is 

C(x, t) - cs = (Co - CJ @(?1(4 0 (33) 

The conductivity corresponding to this concentra- 
tion is obtained from Fig. 1, 

u = u(C(x, t)). (34) 

The average conductivity 6 is determined by our 
measurements; this quantity is 

+a /2 

1 6 = .- 
a s 

u(C(x, t)) dx. (35) 
7zl2 

At this point it is again convenient to simplify 
matters through the use of an approximation. We 
expand o(C(x, t)) in powers of C(x, t) - C(r), 
being the average lithium concentration 

u(C(x,t)) = a(C(t)) + (C(x, t) - C(t)&C(r)) 

d2u - 
++(C(x, t) - C(t))’ dC2 (C(t)) + . . . . 

(36) 

If we average over x we obtain 

a = u(C(t)) 
al2 + ;g(c(t)); s (C(x, t) - C(‘(t))2 dx + . . . . 

-012 (37) 

The approximation we propose to use consists in 
omitting the second-order term as well as all 
higher-order terms in this equation. The error 
introduced in this way amounts to a few percent, 
only, because of the following: For t equal to 1 
or 2 hr the integral has its maximum, but d2a/dC2 
is small, as Fig. 1 shows. On the other hand for 
CT lOi cme3, d2 a/dC* becomes large, but in this 
case the integral is quite small. With this approxi- 
mation, (37) reduces to 

a = u(C(t)), (38) 
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so that C(t) can be obtained in a straightforward The agreement is much better as far as D,* is 
way from 6, using Fig. 1. This function can be concerned. At 420°C the vacancy diffusion coefficient 
written as is [see, e.g. Letaw, et al. (25)] 

o/2 D, = 1.2 x IO-’ cm2 set-‘, 

and since KC, N 110 we should find 

(47) C(t) - c, = (Co - C,) 3 s Q(q) t$@)) dx, 
0 (39) 

cl 

= (Co - cs1; j @(?lo t+(u)> du, 
0 

where 

In this equation 7. appears as a scale factor which 
compresses or expands the time scale. This vari- 
ability can be suppressed by normalizing the time 
scale. Select t = 6 so that 

e(s) - c, = *(co - C,) (41) 

and introduce a new variable w by 

t=6w, (42) 
finally write 

(43) 

then c,,,,(O) = 1, c,,i,(l) = 0.5. icalc is a function 
of the independent variable w and contains only 
one adjustable parameter, U. This function has been 
computed for various values of U by numerical 
integration of (39). 

A function &,,,,,(w) has been obtained from the 
experimental data for P6. This function is best 
approximated by a [&w) with U= 1.8. For this 
&, qot9 = 3.45 and for l,,,,, 0 = 1.64 hr; these 
two values give q. = 2.09 hr-‘. v. and U are used 
to compute No and Do*, using (30) and (40), 

No = 2.64 x 10” cm-3 (44) 

D,* = 1.13 x 10eg cm2 set-‘. (45) 

The value of No is somewhat larger than expected. 
Sample P6 contains only Co = 2.6 x IO” cm-3 
atoms of Li, about 40% of the saturation value at 
the diffusion temperature, C,,, = 6.3 x 10” cm-3. 
According to Eq. (17) we should expect that 

N,z$N.,, = 1.4 x 10” cme3. (46) 
sat 

There does not seem to be any obvious reason for 
the discrepancy between observed and expected 
values. 

D,* = 1.1 x 10eg cm2 set-’ (48) 

which is in good agreement with the measured 
value (45). 

We return to 5&w) now. We use this function 
together with U= 1.8 and q. = 2.09 hr-’ to obtain 
c(t) as determined by (43) and (39). This function 
is shown in Figs. 8 and 9. 

In principle the data of sample P5 can be analyzed 
in the same fashion as those of P6. However, since 
P5 was diffused at a lower temperature, (390”(Z), 
the generation of vacancies by dislocation climb 
is no longer negligible. For this reason we write 
the nuclei density N(x) as 

Here 

N(x) = N,(x) + Iv3 (49) 

a 

N,(x) = Nlo erfc 
2+X 

__ + erfc 
22/D,” e 

(50) 
represents nuclei created with surface-generated 
vacancies and N2 represents nuclei generated via 
dislocation climb. The experimental results for 
P5 are not detailed enough to allow for the deter- 
mination of the three unknowns, Nlo, N2 and Do*, 
in (49). For this reason we use eq. (17) to obtain 
Nio with K=9.5 x lo-l6 cm3 [Eq. (3)] and Co = 
1.12 x 10” cm-‘. For V we use the value obtained 
from P6, corrected for the different diffusion 
temperature. This gives us Nlo = 5.4 x 1O’O cmp3. 
D,* is calculated from Eq. (23) using the vacancy 
diffusion coefficient of Letaw, et al. (1.5), with the 
result D,* = 5.4 x IO-lo cm2 set-‘. N2 finally, is 
selected so as to optimize agreement between 
calculated and measured precipitation curves for 
P5. This criterion leads to N2 = 1.4 x log cmm3. 
Calculated and measured data are shown in Fig. 10. 

Appendix B 

In this appendix we determine the sample con- 
ductivity 0 in function of the dissolved lithium 
concentration, ND. 

The conductivity 0 is 

0 = 4wn + ~4. (51) 



Here n and p are the concentrations of electrons electron mobilities are computed using the results 
and holes respectively and the two p’s are the mobil- of Debye and Conwell (21). The mobilities and the 
ities. All four parameters are functions of the electron and hole concentrations are used to 
dissolved lithium concentration, therefore this obtain a; the result is shown in Fig. 1. 
quantity can be found once u is known. 
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